图1. 定点原位生长干扰素-磷脂类高分子偶联物(IFN-PMPC)
干扰素α(IFN-α)在临床上被广泛用于治疗慢性肝炎和癌症,但是其体内循环半衰期很短(4-8小时),需要每天或一周三次大剂量给药,副作用很大,治疗效果也不理想。将IFN-α干扰素聚乙二醇化(PEGylation)后能够有效解决上述问题,如:罗氏公司的PEG化干扰素——PEGASYS,已在临床上广泛用于肝炎与癌症的治疗。但是PEGylation依然存在明显的缺点,如:产品的生物活性大幅度降低、生产工艺复杂、产率低、成本高等。此外,高分子PEG多次注射后会在体内产生免疫排斥反应,加快药物清除速率,从而导致治疗效果大幅下降。
为了解决这些问题,高卫平实验室研发了定点原位生长技术(SIG)并将其应用于研发新一代干扰素-磷脂类高分子偶联物(IFN-PMPC)。SIG能够大幅度提高产率,有效降低成本。所用高分子PMPC是一种新型仿生材料,已经被美国FDA批准并广泛应用于生物医用领域。PMPC具有非常好的生物相容性和防蛋白吸附性能,多次注射后也不会引起体内免疫反应。通过SIG制备的IFN-PMPC的药代和生物分布与PEGASYS相似,但是其体外生物活性是PEGASYS的8.7倍。动物实验结果表明,IFN-PMPC不仅完全抑制了肿瘤的生长,而且治愈了75%的小鼠,而同样给药剂量的PEGASYS仅能在一定程度上抑制肿瘤生长,但不能治愈小鼠(图2a和2b)。这些实验结果表明,通过新一代SIG方法可以高效可控制备出比已在临床广泛使用的一线药物(PEGASYS)更好的新型蛋白药物,具有巨大的临床转化前景和社会经济价值。
图2. (a)肿瘤生长抑制情况 以及小鼠存活率(b)
高卫平实验室一直致力于蛋白质偶联物尤其是长效干扰素的研发,并且取得了一系列创新性研究成果,连续多次在国际顶级期刊《先进材料》(Advanced Materials)、《生物材料》(Biomaterials)、《控制释放期刊》(Journal of Controlled Release)、《化学通讯》(Chemical Communications)和《纳米尺度》(Nanoscale)等发表成果,相关工作已申请国际和国内发明专利7项。
高卫平实验室的研究重点是设计新型生物医用高分子、蛋白质偶联物以及纳米材料用于疾病的预防与诊疗。以上工作得到国家自然科学基金面上(21274043)和重点项目(21534006)的资助。